Basement-involved thrust faulting in a thin-skinned fold-and-thrust belt, Death Valley, California, USA

Geology ◽  
2003 ◽  
Vol 31 (1) ◽  
pp. 31 ◽  
Author(s):  
Martin G. Miller
2017 ◽  
Vol 47 (2) ◽  
pp. 540
Author(s):  
E. Kamberis ◽  
S. Sotiropoulos ◽  
F. Marnelis ◽  
N. Rigakis

Thrust faulting plays an important role in the structural deformation of Gavrovo and Ionian zones in the central part of the ‘External Hellenides’ fold-and-thrust belt. The Skolis mountain in NW Peloponnese as well as the Varassova and Klokova mountains in Etoloakarnania are representative cases of ramp anticlines associated with the Gavrovo thrust. Surface geology, stratigraphic data and interpretation of seismic profiles indicate that it is a crustal-scale thrust acted throughout the Oligocene time. It is characterized by a ramp-flat geometry and significant displacement (greater than 10 km). Out of sequence thrust segmentation is inferred in south Etoloakarnania area. Down flexure and extensional faulting in the Ionian zone facilitated the thrust propagation to the west. The thrust emplacement triggered halokenetic movement of the Triassic evaporites in the Ionian zone as well as diapirisms that were developed in a later stage in the vicinity of the Skolis mountain.


2022 ◽  
Vol 115 (1) ◽  
Author(s):  
Federica Lanza ◽  
Tobias Diehl ◽  
Nicholas Deichmann ◽  
Toni Kraft ◽  
Christophe Nussbaum ◽  
...  

AbstractThe interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (ML) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000–2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely < 0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement.


Author(s):  
Elizabeth A. Barnett ◽  
Brian L. Sherrod ◽  
Robert Norris ◽  
Douglas Gibbons

2016 ◽  
Author(s):  
Daniel Benjamin Lammie ◽  
◽  
Peter B. Sak ◽  
Nadine McQuarrie

2018 ◽  
Author(s):  
Andrew P. Lamb ◽  
◽  
Richard J. Blakely ◽  
Ray E. Wells ◽  
Brian L. Sherrod ◽  
...  

2019 ◽  
pp. 675-697
Author(s):  
Matías C. Ghiglione ◽  
Gonzalo Ronda ◽  
Rodrigo J. Suárez ◽  
Inés Aramendía ◽  
Vanesa Barberón ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document